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Abstract

This paper introduces a new methodology for classifying and localizing structural damage in a truss structure. The

application of wavelet analysis along with signal classification techniques in engineering problems allows us to discover

novel characteristics that can be used for the diagnosis and classification of structural defects. This study exploits the data

discriminating capability of silhouette statistics, which is eventually combined with the wavelet-based vertical energy

threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This

threshold technique allows us to first obtain a suitable subset of the extracted or modified features of our data, i.e. good

predictor sets should contain features that are strongly correlated to the characteristics of the data without considering the

classification method used, although each of these features should be as uncorrelated with each other as possible. The

silhouette statistics have been used to assess the quality of clustering by measuring how well an object is assigned to its

corresponding cluster. We use this concept for the discriminant power function used in this paper. The simulation results of

damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating

both open- and breathing-type damage even in the presence of a considerable amount of process and measurement noise.

Finally, a typical data mining tool such as classification and regression tree (CART) quantitatively evaluates the

performance of the damage localization results in terms of the misclassification error.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Evaluating the structural integrity of engineering structures has been a critical research topic for the last few
decades due to the ever-increasing demands for longer service life. Most engineering structures are easily
exposed to unforeseen defects internally and externally such as fatigue crack, thermal degradation, impact,
overloading, and corrosion under normal operating conditions. Since the overall cost of repair or downtime
can be significant for severely damaged social infrastructure, the importance of early detection and damage
forecasting has increased considerably. The oldest and simplest measure of damage detection, i.e. visual
inspection, is feasible only for examining human-accessible areas, which is impossible under certain
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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circumstances. Therefore, structural health monitoring systems that use measurements based on the vibration
characteristics of a structure have attracted attention in recent years [1,2]. Many vibration-based damage
detection methods exploit the changes that occur in dynamic properties such as modal parameters (natural
frequencies, mode shapes, and frequency response functions) due to stiffness or mass variations in a structure,
so that the structural integrity can be remotely and indirectly assessed without requiring human inspection.
However, one of the drawbacks of vibration-based approaches is the inherently low sensitivity of the
modal properties toward small-sized structural defects [3]. It is very difficult to determine the variations in
damage-causing modal properties until the severity of damage becomes significant. Some research efforts
have attempted to address this low-sensitivity issue by employing feedback control in a smart structure
framework [4]. However, implementing active control systems in a host structure remains an expensive option
in most cases.

Recently, emerging technologies in data processing have raised the possibility of using the concept of
wavelet transformation in solving structural health monitoring problems [5–7]. Many previous vibration-
based methods heavily relied on the use of Fourier transform, which decomposes a signal into constituent
sinusoids of different frequencies. The Fourier transform basically extracts frequency components from a time
domain signal. Consequently, during the transformation, the time information is lost and it is impossible to
determine when or where a particular event occurred. Although various types of windowing techniques such
as short-time Fourier transform can be used to overcome this problem, the general level of precision is also
limited by the size of the employed window. An alternative measure is to use wavelet transforms. The main
advantage of wavelet transform is its ability to perform fine-scale analysis on highly localized signals such as
spikes or abnormalities. In this respect, wavelets can be contained in a finite interval. Hence, they are suitable
for representing and approximating a signal having many abrupt variations. These advantages are considered
to be desirable features for structural damage detection applications, particularly when the Fourier transform
suffers from low sensitivity because of its inherent ‘‘averaging-out’’ effect. Moreover, due to the availability of
fast transform algorithms, the computational cost of performing the signal transformation has been reduced
significantly. Because of these features, wavelet transform is considered to be one of the most powerful tools
for structural health monitoring.

Moyo and Brownjohn proposed a wavelet strain model for bridge condition monitoring, where a rapid drop
in strain readings can be considered as a potential cause of cracks in reinforced concrete structures [8]. Their
study makes use of the wavelet transform of strain data that is recorded as early as the construction stage, and
attempts to decompose the strain time-history into multiple time-frequency components. This transform
allows the separation of damage-induced features from other harmless influences. Hou et al. [5] applied
wavelet transform to detect abrupt changes in the stiffness in a simple spring–mass–damper system. Their
study showed that the process of accumulative structural degradation can be identified as spikes in level 1
details of wavelet decomposition. Sun and Chang [9] proposed a combined method using wavelet packet
transforms and neural networks for damage assessment in a three-span bridge model. The wavelet packet
sensitivity is also used for detecting damage in a simply supported concrete beam. In other words, this study
exploits the correlation between the wavelet packet sensitivity and the local change in system parameters.
Moreover, Li et al. [10] first decomposed the structural response data into several empirical modes. These
monocomponent signals were further processed through wavelet transforms to identify the stiffness damage in
a four-storey shear building model. Lu and Hsu [11] investigated a wavelet-based approach for detecting a
nonuniformly added mass on a string system. Basu [12] showed that a wavelet-based approach allows the
detection of the bilinear behaviour of nonhysteretic systems. Staszewski [7] summarized some of the
developments and applications in wavelet-based damage detection research. Jung et al. [13] developed a
vertical-energy-based thresholding (VET) procedure. This wavelet feature selection procedure balances the
reconstruction error against the data-reduction efficiency. It is effective in capturing the key patterns in
multiple data signals and removing noise such that the selected wavelet coefficients are treated as the reduced
number of features in subsequent analysis for decision making such as clustering and classification.

This paper investigates a structural damage localization problem using a wavelet-based signal classification
method that extracts signal features with the best discrimination ability when classifying the location of
stiffness damage in a planar truss structure. The proposed approach uses simulation data generated from a
truss model subjected to an unknown random excitation. Since most signal features in the damage-induced



ARTICLE IN PRESS
U. Jung, B.-H. Koh / Journal of Sound and Vibration 321 (2009) 590–604592
response are irrelevant to the class distinction and inevitably corrupted with measurement noises, we first
attempt to apply the VET criteria previously proposed by Jung et al. [13]. According to these criteria, good
predictor sets should contain features that are strongly correlated to the class distinction, although each of
these features should be as uncorrelated with each other as possible; we thus select differentiated features for
data dimensionality reduction and noise removal. Secondly, the proposed VETS (VET wavelet positions
containing large silhouette statistics) comprises a few features with highest silhouette statistics to find the
smaller number of features having more discriminating power for localizing a stiffness-damaged element in a
truss structure. Finally, the VETS procedure is applied to a commonly used data mining tool (classification
and regression tree (CART) [14]) for achieving signal classification and obtaining the misclassification error to
quantify the overall performance of damage localization.

2. Review of related theories

2.1. Wavelet transformation

This section briefly reviews the theoretical background of discrete wavelet transform (DWT). See Mallat
[15] for more details. DWT effectively projects a temporal signal into a special wavelet basis that entails
adjustable multiresolution parameters such as scale and position to represent a nonstationary signal.
Typically, DWT is performed on multiple levels with different frequency resolutions. As each level of the
transformation is performed, there is a trade-off between the time and frequency resolution. The full DWT for
a time domain signal in L2 (finite energy), f(t), can be represented in terms of a shifted version of a scaling
function f(t) and a shifted and dilated version of a so-called mother wavelet function c(t). DWT can be
represented as

f ðtÞ ¼
X
k2Z

cL;kfL;kðtÞ þ
X
jXL

X
k2Z

dj;kcj;kðtÞ (1)

where dj,k are the wavelet coefficients and cL,k, LoJ are the scaling coefficients. These coefficients are given by
the inner product in L2, i.e.

cL;k ¼ hf ðtÞ;fL;kðtÞi and dj;k ¼ hf ðtÞ;cj;ki (2)

Here, fL;kðtÞ ¼ 2L=2fð2Lt� kÞ; k 2 Z is a family of scalar functions and cj;kðtÞ ¼ 2j=2cð2j t� kÞ; jXL; k 2 Z

is a family of wavelet functions. If the mother functions are properly selected, their family forms an orthogonal
basis for the signal space.

Consider a sequence of data y ¼ ðyðt1Þ; . . . ; yðtNÞÞ taken from f(t) or obtained as a realization of yðtÞ ¼

f ðtÞ þ �t at equally spaced discrete time points t ¼ tis, where �ti
s are independent and identically distributed

(i.i.d.) noises following N(0,s2). The DWT of y is defined as d ¼Wy, where W is the orthonormal N�N DWT
matrix. It is given that d ¼ ðcL; dL; dLþ1; . . . ; dJÞ, where cL ¼ ðcL;0; . . . ; cL;2L�1Þ, dL ¼ ðdL;0; . . . ; dL;2L�1Þ, and

dJ ¼ ðdJ;0; . . . ; dJ ;2J�1Þ. Using inverse DWT, the N� 1 vector y of the original signal curve can be

reconstructed as yWTd. By applying DWT to the data ys, d ¼Wy, we obtain the following model in

the wavelet domain: dj;k ¼ yj;k þ Zj;k for j ¼ L,y,J, k ¼ 0; 1; . . . ; 2j � 1, and cL;k ¼ yL;k þ ZL;k for

k ¼ 0; 1; . . . ; 2L � 1, where J ¼ log2 N�1. The model can be represented in the vector format as follows:

d ¼ yþ Z (3)

where d, y, and Z represent the collection of all coefficients, parameters, and errors, respectively. Since W is an
orthonormal transform, Zj,k’s are still i.i.d. N(0,s2) [16]. In order to simplify the notation used in this paper,
d ¼ ðd1; d2; . . . ; dN Þ is used instead of cLk and djk for the components of d.

2.2. Wavelet model for multiple signals

We denote a vector of N equally-spaced data points from a signal curve, where N ¼ 2J with some positive
integer J and i ¼ 1,2,y,M by yi ¼ ½yi1; yi2; . . . ; yiN �. Let Y ¼ ½y1; y2; . . . ; yM �

T be the collection of M multiple
sets of functional data. When DWT W is applied to a data set, the matrix of wavelet coefficients obtained from
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this transformation is D ¼WY, where D ¼ ½d1; d2; . . . ; dM �
T, di ¼ ½di1; di2; . . . ; diN �, and dim is the wavelet

coefficient at the mth wavelet position for the ith data curve. The model of wavelet coefficients D from M

signals is given as follows:

D ¼ Yþ Z (4)

where Y ¼ ½y1; . . . ; yM �
T(yi ¼ ½yi1; yi2; . . . ; yiN �) and Z is a column of M�N random errors with normal

distribution N(0,s2). The measurement error (noise) variation of the wavelet coefficients is characterized by the
common process variance s2 for multiple signals.
3. Data classification methodology

3.1. Data pre-selection by VET

Most wavelet-related models for analyzing complicated signals have focused on feature selection and noise
removal for the case of a single signal. However, many engineering applications require the simultaneous
processing of multiple signals to understand the nature of a system or to extract hidden features of the defects
within the system. Although a method for single-signal-based wavelet feature selection can be applied to
process multiple signals, it can cause a problem in that different numbers and choices of representative wavelet
features in different signals constitute no ‘‘unified wavelet-positions’’ in the comparison of signals, especially in
the case of signals from different classes in a distinct process effect. Therefore, Jung et al. used the advantages
afforded by scalograms [16] and developed the following VET procedure [13]. This wavelet feature selection
procedure balances the reconstruction error against the data-reduction efficiency and proves that is powerful
at capturing key patterns in multiple signals while removing the embedded noise. The selected wavelet
coefficients are treated as the ‘‘reduced-size’’ data (reduced number of features) in subsequent analysis for
decision making such as clustering and classification. The study introduced the overall relative reconstruction
error (ORRE) function for processing multiple signals as follows:

ORREðlÞ ¼ LðlÞ þ x � UðlÞ (5)

where

LðlÞ ¼
PN

m¼1E½kdvmð1� Iðkdvmk
24lÞÞk2�PN

m¼1E½kdvmk
2�

(6)

UðlÞ ¼
PN

m¼1E½Iðkdvmk
24lÞ�

N
(7)

Here, E represents the expectation of random variables. Note that Eqs. (6) and (7) include the indicator
function, Iðkdvmk

24lÞ, which constitutes the threshold parameter. The indicator function is based on the
‘‘vertical energy’’ metric,

kdvmk
2 ¼ d2

1m þ d2
2m þ � � � þ d2

Mm; m ¼ 1; 2; . . . ;N (8)

which is the sum of all wavelet coefficients at the mth wavelet position. This is why it is called VET.
Further, the ORRE criterion was originally developed due to the requirement for balancing the

reconstruction error and the data-reduction ratio. Eq. (6) represents a ‘‘normalized’’ reconstruction error
from the wavelet approximation model Y ¼WTD. On the other hand, Eq. (7) indicates the number of
normalized wavelet coefficients. This term is used as a penalty for including an excessive number of wavelet
coefficients so that the data model can be approximated and represented in the simplest manner possible.
Similar penalty ideas have been applied in ridge regression and neural networks [17]. Normally, the weighting
parameter of the penalty, x, in Eq. (5) should be defined by the user. Alternatively, it can be provided by the
generalized cross-validation (GCV) method [18]. For simplicity, this study assumes x ¼ 1, which places equal
weights on both components, L and U.
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Given VET in Eq. (8), ORRE is minimized to determine l. Therefore, a simple formula for estimating the
optimal l with lN,M is developed as

lNM ¼
PN

m¼1

Eðkdvmk
2Þ=N (9)

Since every wavelet coefficient is independent and has a normal distribution, the vertical energy of each
wavelet position follows a noncentral chi-square distribution [19]. Based on this result and some other calculus
derivations, Jung et al. [13] proved the optimality of lNM. Therefore, the ith position of the wavelet coefficients
(across signals) can be selected if its vertical energy is larger than lN,M.

Fig. 1 shows a visual comparison of the representative original signal (Fig. 1(a)) and the reconstructed one
(Fig. 1(c)) from VET wavelet positions. The original signal used in this example is simulation data from the
time–history response of a cantilevered eight-bay truss model. The truss model was randomly excited and the
displacement of the free end was recorded for wavelet transforms. The detailed description of the simulation
process will be discussed in the following section. Here, the original signal was decomposed into eight levels
using Daubechies 4 (db4), a type of wavelet. While the size of the original signal is N ¼ 8192, the reconstructed
one comprises only 685 VET wavelet positions, which implies a large data reduction. Figs. 1(b) and (d) are
magnified versions of Figs. 1(a) and (c), respectively, that show the effectiveness of noise removal via the VET
procedure. In the following analyses, the selected wavelet coefficients at the VET wavelet positions are treated
as the ‘‘size reduced’’ data for developing a damage detection algorithm while achieving noise removal.
Therefore, by exploiting wavelet transforms, only a small portion of the original data actually needs to be used
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Fig. 1. Signal reconstruction using 685 VET wavelet positions and the effect of noise removal: (a) original signal, (b) magnified original

signal, (c) reconstructed signal, and (d) magnified reconstructed signal.
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for feature extraction, which eventually saves computing time and storage space. For more details about the
VET procedure, see Jung et al. [13].

3.2. Discriminant analysis through silhouette statistics

This section describes a new approach for feature selection that generates VETS. Silhouette statistics have
been widely used to assess the quality of clustering by measuring how well an object is assigned to its
corresponding cluster. See Ref. [20] for more details on silhouette statistics. Here, this concept is expanded to
the discriminant power function, as shown in Eq. (10) below. For signal pattern classification, it is assumed

that a data set is given in which H ¼ ðdj

!
;GðjÞÞ for j ¼ 1,y,M. The data set has M data points with well-

defined class labels. Note that dj

!
¼ ðd1j ; d2j ; . . . ; dpjÞ is the signal vector for the jth sample described by p

predictor variables that are pre-selected by VET (where p ¼
PN

m¼1Iðkdvmk
24lNM Þ, i.e. the number of wavelet

positions selected by the VET procedure) and GðjÞ 2 G ¼ fG1;G2; . . . ;Gkg is the class label associated with dj

!
.

Note also that k is the number of classes and nk is the number of dj

!
in Gk. The proposed discriminant power

function based on silhouette statistics at the ith VET feature is then defined as

Si ¼
1

M

XM
j¼1

biðdj

!
Þ� aiðdj

!
Þ

maxfaiðdj

!
Þ; biðdj

!
Þg

; i ¼ 1; 2; . . . ; p (10)

where, for dj

!
2 Gk,

aiðdj

!
Þ ¼

1

nk � 1

X
dj0
!
2Gk

diðdj

!
; dj0
!
Þ (11)

biðdj

!
Þ ¼ min

sak

1

nk

X
dj0
!
2Gs

diðdj

!
; dj

!
Þ (12)

and

diðdj

!
; dj0
!
Þ ¼ ðdij � dij0 Þ

2 (13)
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In other words, aiðdj

!
Þ is the average distance between dj

!
and all other samples in the same class with respect to

the ith wavelet position and biðdj

!
Þ is the minimum average distance of dj

!
to all samples in other classes with

respect to the ith wavelet position. The discriminant power function with respect to the ith wavelet position, Si,
returns a discriminant power score in the range of �1 to +1, and indicates how well all data points can be
assigned to their own class in terms of the ith wavelet position. Intuitively, data points are well-classified by
wavelet positions with a large silhouette statistic value, data tend to lie between classes with small silhouette
values, and data points are poorly classified by those with negative values.

While relevant features can be helpful in classification, irrelevant ones may undermine the classification
performance. Also, as the more features are considered, the more training examples are needed to achieve
better results. Thus, choosing relevant features are critical in the process of classification. This study exploits
the concept of silhouette statistic for the measure of how well the classes are discriminated with respect to a
given VET feature. According to the perspective of the silhouette statistics, this study will employ Si to select
a few important wavelet positions for further cluster visualization and classification analysis. (The larger Si of
a VET feature is, the higher class-discrimination ability the VET feature has), i.e. sorting the mean silhouette
statistics (discriminating power function) in ascending order:

Sð1ÞoSð2Þo � � �oSðpÞ; p ¼
XN

m¼1

Iðkdvmk
24lNM Þ (14)

Fig. 2 shows the silhouette statistics, Si, i ¼ 1,y,p (p ¼ 685 in this simulation) for each VET wavelet
position. The largest silhouette statistics Si ( ¼ 0.5260) leads us to select the first VETS wavelet position (first
VETS wavelet position ¼ 38th VET wavelet position ¼ d8,6), the second largest Si ( ¼ 0.5136) to the second
position (second VETS wavelet position ¼ 85th VET wavelet position ¼ d7,21), and so on. Later, when
implementing CART, only five VETS containing large Si are applied to assign the test data to their own class
for evaluating the misclassification error. See Ref. [14] for more details on signal classification using CART.
4. Description of simulation

4.1. Damage in truss structure

This section describes a numerical model of a truss structure and the characteristics of simulation data.
Here, the aforementioned wavelet-based classification method will be demonstrated for localizing the stiffness
damage. The physical system under consideration is an eight-bay planar truss structure, as shown in Fig. 3.
The truss structure is 4m-long and has two cross-braces in each bay. All truss members comprise an
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Fig. 3. Schematics of an eight-bay planar truss structure with possible damage locations (D1–D4), displacement sensor location (S), and

actuator location (A).
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Fig. 4. Crack opening (a) and closing (b): breathing crack.
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aluminium solid bar whose Young’s modulus (E) is 70� 109N/m. Each strut is 2 cm in diameter and the
length of each bay is 0.5m. Its boundary condition is shown as a cantilevered truss that is fixed on a solid
wall to the left. Note that a Bernoulli-beam element is used in formulating the FE model of the structure
to accommodate the bending moment at each degree-of-freedom. In order to extract the dynamics of the
system, Gaussian random noise input is applied as an excitation force at point A, as shown in the figure.
The response of the system, i.e. the end displacement of point S along the direction of the arrow is collected as
time–history data.

Two different types of damage are investigated. The first one is an open-type (slot) crack, implying that no
stiffness variation occurs as the member experiences compression and expansion. In other words, the strut will
have the same bending stiffness although the member undergoes compression (crack closure) and expansion
(crack opening). On the other hand, a structure having a breathing-type (fatigue) crack typically behaves as a
bilinear system, where the bending stiffness instantaneously changes between two states (undamaged and
damaged), as shown in Fig. 4. Most damage detection researches have simply assumed their damage model to
be an open-crack one in order to avoid modelling and simulation difficulties. However, a breathing-type crack
is closer to a practical real-world damage mechanism. Obviously, the bilinear nature of a breathing crack
largely necessitates a time–frequency data analysis technique such as wavelet transform. Therefore, this study
also addresses the issue of nonlinear behaviour in breathing cracks, i.e. how they affect the overall
performance of wavelet-based damage localization.

Fig. 3 also indicates four possible damage locations (D1–D4), which will be eventually localized through the
proposed wavelet-based algorithm. In order to simulate structural defects or damage, the bending stiffness
(EI) of the beam element is reduced by 50% in elements D1 through D4 (i.e. 1.0 for healthy and 0.5 for
damaged state). For comparative study, the dynamic behaviour of two damage types, i.e. open- and breathing-
type crack is also realized in this simulation. In order to accommodate breathing-type damage, a pair-
comparison between two nodes of damaged beam elements is performed at each time step. According to the
result of the current time step, i.e. the sign of the relative displacement between adjacent nodes, the elemental
stiffness matrix is switched to a stiffness-reduced one for the analysis of the next time step. In other words, the
compression and expansion modes of the damaged strut member alternate between different stiffness matrices
in each time step. Consequently, nine scenarios are investigated, i.e. four damage location cases for two
different damage types and one healthy case.

4.2. Characteristics of simulation data

The simulation generates sampled data at the rate of 1000Hz for 20 s resulting in N ¼ 20,000 data points. In
order to facilitate uncertainties in the severity of damage, the level of reduced bending stiffness on the
damaged truss member is randomly perturbed from its mean value. Therefore, the simulation is repeated
10 times to create a group of randomly populated data sets for all healthy and damaged cases, i.e. the data
model of this simulation can be written as

yi ¼ fðt; biÞ þ eðnÞ; bi ¼ gðai; bi; gi;riÞ (15)
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where yi ¼ ½yi1; yi2; . . . ; yiN � is a vector of N equally-spaced data points from the ith signal (i ¼ 1,2,y,10); e(n),
a vector of random noise; and bi, a signal-specific parameter for the ith signal. While this variation in damage
severity attempts to mimic unforeseen influences in the process error, a white noise (e(n)) is additionally
imposed on each time-history data set to create measurement noise. yij ¼ f ðtj; biÞ þ �

ðnÞ
j can be used in other

expressions. In the above model, g( � ) is an unknown function of parameters such as damage location ai,
damage severity bi, perturbation level of damage severity gi, and type of damage ri, i.e. open or breathing
crack. The damage location parameter ai is defined as

ai 2 A ¼ f0; 1; 2; 3; 4g (16)

where ai ¼ 0 indicates that the ith signal is from an undamaged (healthy) case. Similarly, if ai ¼ 1,2,3, and 4,
the signals are those arising from the damaged cases at locations D1, D2, D3, and D4, respectively. bi and gi are
defined as

bi ¼ bþ �ðbÞi ; �ðbÞi �Nð0; ðk � b=3Þ2Þ (17)

where

b ¼
1 if ai ¼ 0

0:5 otherwise

�

k ¼
0 if ai ¼ 0

gi otherwise

(
(18)

gi 2 G ¼ f0:1; 0:05; 0:01g

In the definition above, ei
(b) is a realization of damage severity perturbation, i.e. if the signal is from a

healthy case (ai ¼ 0), there is neither damage severity nor perturbation of damage severity. Unless the signal is
from a healthy case, ei

(b) has some value of damage severity perturbation with a parameter gi. Here, the value

of gi is assumed as Prð�gi � bo�ðbÞi ogi � bÞ ¼ 2ðFð3Þ � 0:5Þ ¼ 0:997, where FðzÞ ¼
R z

�1
ð1=

ffiffiffiffiffiffi
2p
p
Þe�x2=2 dx. With

regard to the damage type, ri ¼ 0 for an open crack case while ri ¼ f ðtj; yijðtÞÞ for a breathing crack, which

results in the bilinear dynamic behaviour described in the previous section.
Fig. 5 shows the time–history data generated from the truss structure for the healthy case shown in Fig. 5(a)

and four different damage locations, i.e. D1 through D4 in Figs. 5(b)–(e), respectively. The figures
conveniently show the simulation data for the first 0.8 s. As mentioned above, all signals of each damage case
include randomly perturbed damage severity (in this figure, gi ¼ 0.1). The signal-to-noise ratio (SNR) is
defined as std(f)/s, where std(f) is the standard deviation of the discretized signal points and s is the standard
deviation of noise. In the data model, the realization of measurement errors ej

(n) is defined as

�ðnÞj �N 0;
stdðfðt; ai ¼ 0ÞÞ

SNR

� �2
 !

(19)

where stdðfðt; ai ¼ 0ÞÞ is the standard deviation of the signal from the healthy case. Fig. 6 illustrates noise-free
data (Fig. 6(a)) along with noise-corrupted ones having three levels, i.e. SNR ¼ 7, 5, and 3 (Figs. 6(b)–(d)).
For signals with large SNR (less noisy), the noise level (s) is correspondingly low.

It is obvious that the proposed damage classification method should extract as many common features as
possible among 10 data sets that are generated from the response of the same damage location case. This will
prove the robustness of the method toward uncertainties in the perspective of damage severity. On the other
hand, various damage states developed from different damage locations in the truss should be clearly
distinguished to guarantee a reliable signal classification, which also tests the sensitivity of damage
localization. Given the simulation data created in this study, clustering analysis will be performed to
investigate the effectiveness of the VETS procedure by employing several data domains including those based
on VETS wavelet positions and others. Further, this study applies CART to several domain data for
classifying the damage locations and assessing its accuracy estimation. The results and discussions are
presented in the next section.
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5. Damage localization results and discussions

5.1. Clustering analysis using VETS

Simulation studies are conducted for two different damage types (open- and breathing-type cracks), three
values of damage severity variation parameters (gi 2 G ¼ f0:1; 0:05; 0:01g), and three SNR levels (7, 5, and 3)
on e(n). The signal from a damaged case with large gi and small SNR inherently exhibits more variable and
noisier signals in a class. Therefore, 18 different simulation cases are generated. Furthermore, these cases are
created for each different damage condition, i.e. four different damage locations, respectively. Note that only
three SNR cases are considered for the healthy condition.

In order to avoid many replicated 3D plots, this study shows a few representative cases with the most
variable simulation setting (g ¼ 0.1 and SNR ¼ 3) and the least variable one (g ¼ 0.01 and SNR ¼ 7) for both
open and breathing damage cases. Figs. 7–10 show some of the results from the clustering analysis for damage
classification using the VETS wavelet positions. The goal of VETS-based clustering is to discriminate the
existence, type, and location of damage in a truss structure. Here, the first three VETS wavelet positions are
used for extracting damage-sensitive features for clustering. As shown in Fig. 7, four different damage
locations, i.e. D1–D4 along with the healthy case are clearly localized in a group when they are projected to
the first three VETS wavelet positions. Obviously, the damage locations in the breathing-type damage cases
(Fig. 8) are less distinct than those in the open-type ones (Fig. 7) under the same perturbation parameter and
SNR. This trend becomes more significant as g increases and SNR decreases, as shown in Figs. 9 and 10. With
regard to an extreme case, the largest process perturbation g ¼ 0.1 and the lowest SNR ¼ 3 in conjunction
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Fig. 9. VETS clustering for the open crack with gi ¼ 0.1 and SNR ¼ 3.
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with breathing-type damage produced the worst discrimination result, as shown in Fig. 10. However, all 50
signals generated from the four different damage locations and one healthy condition (ten for each condition)
have been sufficiently separated and well clustered overall for both open- and breathing-type damage. One can
predict that as g increases above 0.1, i.e. the uncertainty of damage severity increases, the size of the VETS
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cluster will also increase. This trend can be used to statistically determine the confidence level of a damage
location. For example, Figs. 7–10 provide a trained baseline map for confirming the presence of actual damage
at unknown locations, which also exhibits the statistical level of damage severity deviation from the predefined
nominal value.

5.2. Classification using CART and accuracy estimation

From the previous section, it is reasonable to assume that the central position of the VETS cluster is
strongly correlated to the damage location in a given structure. Next, the CART method is applied to the data
model of the VETS wavelet positions to obtain the membership index of classification for each signal. CART
is a commonly used data mining tool for assessing the accuracy of classification results using the
misclassification error rate as an evaluation metric. The misclassification error rate is defined as the observed
proportion of misclassified observations out of the original data. Here, a ten-fold cross-validation method is
adopted to obtain the misclassification error rate of CART in several data domains. In ten-fold cross-
validation, a set of original data samples is partitioned into ten sub-samples. Among these sub-samples, nine
are actually used for training, while the remaining sub-sample is retained as a validation data for testing the
classification model, which yields the misclassification error rate. The cross-validation process is then repeated
10 times (number of folds), with each of the 10 sub-samples used exactly once as validation data. The 10
results from the folds are then averaged to yield the misclassification error rate estimation. The
misclassification error rate estimations for open- and breathing-type cracks are shown in Tables 1 and 2,
respectively.

By comparing these two tables, it is observed that the breathing crack has higher misclassification error
rates than the open crack type, which is consistent with previous classification results. Further, CART from
the VETS domain produced a more accurate classification performance as compared to other data domains.
Therefore, the proposed VETS-based CART approach outperformed other methods despite the perturbed
crack severity and noise-corrupted measurement error that could complicate the classification of the damage
location. Note that tree-based methods such as CART partition the feature space into a set of rectangles, and
then fit a simple model in each one. They are conceptually simple yet powerful. However, one major problem
with tree-based method is its high variance. Often a small change in data points may result in very different
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Table 1

Misclassification error rate (� 100 ¼%): open crack case.

gi SNR Time Wavelet VET VETS

0.01 7 0.18 0.02 0.02 0.00

0.01 5 0.22 0.10 0.06 0.00

0.01 3 0.22 0.14 0.18 0.00

0.05 7 0.26 0.08 0.04 0.00

0.05 5 0.42 0.04 0.02 0.00

0.05 3 0.28 0.08 0.08 0.00

0.1 7 0.22 0.02 0.04 0.00

0.1 5 0.20 0.08 0.02 0.00

0.1 3 0.38 0.02 0.06 0.00

Table 2

Misclassification error rate (� 100 ¼%): breathing crack case.

gi SNR Time Wavelet VET VETS

0.01 7 0.46 0.14 0.14 0.00

0.01 5 0.60 0.16 0.14 0.06

0.01 3 0.50 0.18 0.12 0.02

0.05 7 0.36 0.08 0.06 0.00

0.05 5 0.32 0.16 0.14 0.02

0.05 3 0.62 0.16 0.12 0.00

0.1 7 0.22 0.06 0.04 0.06

0.1 5 0.32 0.22 0.18 0.02

0.1 3 0.42 0.22 0.14 0.18

Table 3

Average elapsed computation time for CART.

Domain Time Wavelet VET VETS

Elapsed time (s) 198.69 196.61 16.49 0.78
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series of splits, making interpretation somewhat precarious. The main reason for this instability is the
hierarchical nature of the process: the effect of an error in the top split propagates down to all other the splits
[17]. The worse performance of VETS than VET for the case of severity perturbation parameter ¼ 0.1 and
SNR ¼ 3 in Table 1 seems due to this drawback.

The computational time of MATLAB code for CART is benchmarked using a PC with an Intel Pentium
3.2-GHz processor. Table 3 provides the comparison result of the average elapsed computation time in
performing CART using data in the original time, wavelet, VET, and VETS domains. CART in the VETS
domain executes faster than the others. In conclusion, the efficiency of the proposed feature extraction and
selection method is validated by comparing the computation time and misclassification error.

6. Conclusions

In this paper, a novel procedure is proposed to localize structural damage by classifying the response signal
in terms of VETS wavelet positions. This study uses an eight-bay planar truss structure to validate the
proposed damage localization method. Two different types of damage, i.e. open and breathing conditions are
investigated to test the benefits of wavelet-based signal processing. The simulated time–history responses are
processed to extract damage-sensitive wavelet positions, which are further developed to classify damage
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locations by exploiting VETS-based clustering analysis. The wavelet-based VET technique allows us to first
obtain a suitable subset of extracted or modified features of our data, i.e. good predictor sets should contain
features that are strongly correlated to the characteristics of the data without considering the classification
method used, although each of these features should be as uncorrelated with each other as possible. Silhouette
statistics have been used to assess the quality of clustering by measuring how well an object is assigned to its
corresponding cluster. We expend this concept to the discriminant power function used in this paper. The
simulation results showed that the locations of stiffness-reduced damage in the truss are successfully classified
and localized even with a significant amount of noise and damage severity uncertainties. This study illustrated
the potential application of wavelet-based time–frequency signal classification such as VETS in solving the
damage localization problem.
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